
Integrating ACT-R and Cyc in a large-scale model of language
comprehension for use in intelligent agents

Jerry Ball, Stuart Rodgers, Kevin Gluck

Air Force Research Laboratory, Human Effectiveness Directorate
Warfighter Training Research Division

6030 S. Kent Street, Mesa, AZ 85212-6061
FirstName.LastName@mesa.afmc.af.mil

Abstract
This paper describes a research program for the creation of a
large-scale model of language comprehension for use in the
development of language enabled intelligent agents. The
language comprehension system is being implemented using
the ACT-R cognitive architecture and modeling environment
and adopts the cognitive principles and constraints of that
architecture. The paper focuses on issues arising from the
initial attempt to integrate the Cyc knowledge base into the
language comprehension system as a means of scaling up the
knowledge of the system to a size suitable for the
development of intelligent agents.

Introduction
First Newell (1980, 1990) and more recently Anderson and
Lebiere (in press) have argued that both a vast knowledge
base and natural language are important components of any
unified, integrative account of human cognition. It remains
a serious challenge in the cognitive modeling and agent
representation communities to incorporate both of these
into synthetic human representations that are
psychologically principled and practically functional.

We are in the process of building a model of language
comprehension that uses the ACT-R cognitive architecture
and modeling environment coupled with the Cyc
knowledge base to support the representation and
processing of communications between synthetic agents
and humans. The current version of the model (which does
not yet integrate Cyc) is described in Ball (2003, 2004).
Although the model is psycholinguistic in its theoretical
orientation, it is intended to be a functional, large-scale
model of language comprehension more in line with AI and
Computational Linguistic approaches to Natural Language
Understanding than typical computational psycholinguistic
systems. To that end, we are investigating the possibility of
integrating the large commonsense knowledge base
provided in Cyc with the ACT-R implementation of the
language processor. In this paper we focus on the mapping

American Association for Artificial Intelligence
(www.aaai.org).

of Cyc terms and assertions to ACT-R declarative memory
chunks and productions.

Within the computational cognitive modeling
community, there have been a few attempts to integrate
large knowledge bases into computational cognitive models
of language processing. Bruno Emond (personal
communication) integrated WordNet into an earlier version
of ACT-R. The NL-Soar group (Deryle Lonsdale, personal
communication) integrated WordNet into a NLP system
implemented in Soar. Unfortunately, these efforts are not
well documented and the WordNet integrations are no
longer available.

Within the AI and Computational Linguistics
community, there have been numerous integrations of large
scale knowledge bases with language processing systems.
The developers of Cyc have developed a commercially
available language processing system which uses Cyc for
its knowledge base. Many Computational Linguistic
systems of language processing make use of large
annotated corpora and knowledge bases (e.g. Nirenburg &
Raskin, to appear; Wilks, Slator and Guthrie, 1996). Most
of these integrations are engineering efforts and cognitive
plausibility has not been a concern. As noted above, the
focus of our research is on developing a large-scale
language comprehension system, implemented in a
cognitive architecture, and adhering to well known
cognitive constraints on language comprehension. This
difference in focus is a main reason we are not considering
the wholesale adoption of any existing AI/Computational
Linguistic systems, although our research is informed by
such systems.

Double R Model
The model of language comprehension discussed in this
paper is called Double R Model (Referential and Relational
Model). In addition to being implemented in the ACT-R
cognitive architecture and modeling environment, Double
R Model is founded on the linguistic principles of
Cognitive Linguistics (Langacker, 1987, 1991; Talmy,
2001; Lakoff, 1987). Cognitive Linguistics is concerned
with examining the relationship between form and meaning

and argues against the existence of an autonomous syntactic
component unlike Generative Syntax (Chomsky, 1965),
which adopts the autonomy of syntax hypothesis and where
form is studied in isolation from meaning. Double R
Grammar is the Cognitive Linguistic theory underlying
Double R Model. In Double R Grammar, the focus is on the
representation and integration of referential and relational
meaning—two key dimensions of meaning that get
grammatically encoded. Double R Process is the
psycholinguistic theory of language processing underlying
Double R Model. Double R Process is a highly interactive
theory of language processing which eschews a separate
syntactic analysis feeding a semantic interpretation
component in favor of a direct interpretation of the
referential and relational meaning of input texts.

Double R Model is currently capable of processing an
interesting range of grammatical constructions including:
intransitive, transitive and ditransitive verbs; verbs taking
clausal complements; predicate nominals, predicate
adjectives and predicate prepositions; conjunctions of
numerous grammatical types; modification by attributive
adjectives, prepositional phrases and adverbs, etc. Double
R Model accepts as input as little as a single word or as
much as an entire chunk of discourse—using the perceptual
component of ACT-R to read words from a text window.
Unrecognized words are simply ignored. Unrecognized
grammatical forms result in partially analyzed text, not
failure. The output of the model is a collection of
declarative memory chunks that represent the referential
and relational meaning of the input text. The code for
version 1 of the model is available on the Double R Theory
web site at www.DoubleRTheory.com.

ACT-R
ACT-R is a cognitive architecture and modeling
environment for the development of computational
cognitive models (Anderson & Lebiere 1998). It is a
psychologically based cognitive architecture which has
been used extensively in the modeling of higher-level
cognitive processes, albeit on a smaller scale than that
typical of AI/Computational Linguistic systems (see the
ACT-R web site at http://act-r.psy.cmu.edu/ for an
extensive list of models and publications). ACT-R is a
hybrid system that includes symbolic production and
declarative memory systems integrated with sub-symbolic
production selection and spreading activation and decay
processes. Production selection involves the parallel
matching of the left-hand side of all productions against a
collection of buffers (e.g. goal buffer, retrieval buffer,
visual buffer) which contain the active contents of memory
and perception. Production execution is a serial process—
only one production is executed at a time. The parallel
spreading activation process determines which declarative
memory chunk is put in the retrieval buffer. ACT-R
provides built-in support for single inheritance of

declarative memory chunks and limited, variable-based
pattern matching. Version 5 of ACT-R (Anderson et al., in
press) adds a perceptual-motor component supporting the
development of embodied cognitive models.

All knowledge in ACT-R is represented as either
declarative memory (DM) chunks or productions, both of
which are symbolic. DM chunks are implemented using a
frame-based representation consisting of chunk types, slots
and values. Chunk types are named and may be organized
into a single inheritance hierarchy which may have multiple
roots (hence, multiple trees). Slots are named, but not
typed. Slots are not organized into an inheritance hierarchy.
Slot values may be typed chunks or strings. If the value is a
chunk, that chunk participates in the inheritance hierarchy.
Chunk types are defined before model execution. Instances
of chunks of a given type may be defined statically before
model execution or created dynamically during execution.
It is a general principle of the ACT-R architecture that
chunks should be limited to 3 or 4 slots containing
embedded chunks for their values, consistent with
psychological constraints on the ability to simultaneously
entertain multiple chunks, although this principle is not
enforced by the architecture. Unlike productions, DM
chunks are not supposed to be directional and the spreading
activation mechanism of ACT-R can activate chunks in
declarative memory via their slot values as well as using the
chunk type to support retrieval.

In ACT-R, productions are procedural representations of
skilled behavior that are not open to conscious reflection.
They are symbolic, rule type structures with an antecedent
and a consequent. The antecedent contains specifications
that are matched against a collection of buffers containing
DM chunks and perceptual information, and the consequent
may alter the values of the slots in the DM chunks specified
in the consequent or cause various actions to be performed.
Typically, the antecedent of a production will match to the
goal buffer, and optionally to the retrieval buffer, and/or
one of the perceptual input buffers (e.g. visual buffer,
auditory buffer). Variables are allowed in productions and
can match to chunks, but variables cannot unify with other
variables. Typically a variable in the antecedent matches to
a chunk in one of the buffers, and a variable in the
consequent matches to a chunk or the same variable in the
antecedent. Variables are not allowed to be unbound across
productions and must be instantiated within the production.
Productions are inherently directional in ACT-R which uses
a forward chaining inference method – i.e. the antecedent is
always matched to the buffers during production selection
and the consequent of the production is executed after
selection.

The directional nature of productions in ACT-R is
supported by empirical evidence about how humans
perform procedural tasks that are highly automated (i.e.
performing an automated procedural task backwards is
much slower and more error prone than performing the task
in the normal direction). Productions tend to be highly
specific to the task being performed, but the existence of

generalized productions is not precluded. In the language
comprehension system, generalized productions are used to
effect default actions when no more specialized production
matches the buffers. For example, there is a generalized
production to retrieve the previously created DM chunk, if
no other production matches the current buffer context.

Cyc
Before selecting Cyc as our primary knowledge base, we
reviewed several ontologies that are published online,
including Cyc, WordNet, Generalized Upper Ontology, and
others, to evaluate their relative strengths for this effort. Of
the ontologies reviewed, Cyc and Wordnet had by far the
largest number of elements defined or implemented.
However, Cyc has the largest number (106) of axioms
defined with the ontology’s concepts. Primarily for this
reason, we selected Cyc for our project.

Cyc is a very large general knowledge base of
commonsense knowledge developed over much of the past
20 years by Doug Lenat and his team at Cycorp in Austin,
Texas (Minsky, 2003; Lenat, 1995). The initial motivation
for the project was to facilitate the development of
reasoning systems which were knowledge intensive.
Knowledge is embodied within the Cyc ontology.

The Cyc ontology has two fundamental expression types:
terms and assertions. Terms can be either atomic
(individual constants) or non-atomic (a function with
arguments). Individual constants provide names for
concepts and the relations between concepts. Functions
allow for the automatic creation of many non-atomic terms
such as (LiquidFn Nitrogen). Terms categorize the stuff
and things of everyday life such as dogs, weather, dates,
ideas, people, etc. Terms can also be logical connectives
such as and or implies. Terms are combined to make
various types of assertions. The primary relational term in
an assertion is the predicate. Predicates relate things or
concepts to other concepts for example: (fatherOf Cain
Adam). This relation asserts that Cain’s father is Adam.
Predicates relate individuals to groups, classes to instances,
opposites, generalizations, and others, for example:
memberOf, isa, disjointWith, and genls.

Cyc makes no distinction between procedural and
declarative knowledge, representing both as terms and
assertions. The Cyc inference engine provides inferencing
capabilities based on logic, unification, forward chaining
(the default) and backward chaining (when specially
invoked), combined with additional capabilities based on a
large number of specialized heuristics. Because of its vast
size, Cyc has microtheories to support locally (i.e. within a
microtheory) consistent assertions, but potentially globally
inconsistent assertions.

Core Similarities and Differences
Cyc was originally implemented using frames and
subsequently converted to a logical representation when the
frame based representation proved to be too awkward and
inflexible (Whitten, 1995). In part, this stems from the
inflexibility of embedding attributes within the slots of
frames, where accessing the value of a slot requires access
to the frame first. Logical representations do not have this
limitation. The value of an attribute can be accessed
directly, assuming the attribute is represented as a predicate
and predicates are indexed for direct access. On the other
hand, in a frame representation, once the frame is
identified, the values of the slots can be retrieved without
search. In a logical representation, the argument (i.e. the
object) to which the predicate (i.e. attribute) applies must
be indexed to avoid search. This can be expensive if
multiple argument positions must be indexed. Note that
implementations of Prolog (e.g. Quintus Prolog, Sicstus
Prolog) often only index on the first argument of a
predicate to avoid this expense, although Cyc indexes on all
arguments. In ACT-R, although productions are explicitly
directional, DM chunks are not meant to be. ACT-R
provides sub-symbolic capabilities that mitigate the
directional limitations of its frame based representations. In
particular, the spreading activation mechanism of ACT-R
allows the slot values of the DM chunk in the goal buffer to
activate DM chunks in declarative memory with matching
values, thereby providing an index-like capability to access
DM chunks via their slots and not just via their chunk
types.

Both Cyc and ACT-R support inheritance, however, Cyc
provides a multiple inheritance capability, whereas ACT-R
only provides built-in support for single inheritance. As
discussed below, this has important ramifications for the
mapping from Cyc to ACT-R.

From an object oriented programming perspective,
neither ACT-R nor Cyc provide a mechanism for
encapsulating methods within the DM chunks or terms that
correspond most closely to objects. ACT-R provides an
eval operator which makes it possible to insert lisp code
into productions and Cyc provides an evaluationDefn
predicate associated with functions that supports the
inclusion of code to compute the function, but neither of
these are encapsulated in the way typical of many object
oriented systems. The slots in ACT-R’s DM chunks
correspond to the data values encapsulated in objects, but
the slots are not typed, although the DM chunks which are
the values of the slots are typed. In Cyc even attributes are
not encapsulated. Rather, they are specified external to the
concept they are attributes of, with a pointer to the concept
included as an argument of the predicate that specifies the
attribute.

Cyc was designed from the ground up with large-scale
systems in mind. ACT-R was also designed to scale, but

has primarily been used in the development of small-scale
cognitive models. The serial implementation of the parallel
spreading activation and production selection processes
may limit the ability of ACT-R to scale to the size of the
Cyc knowledge base. This may not be an issue so long as
the full Cyc KB is not loaded into ACT-R at runtime.

Cyc is a purely symbolic system. ACT-R provides sub-
symbolic spreading activation, production selection, and
stochastic noise mechanisms.

Cyc uses microtheories (for which ACT-R has no
equivalent) to model large chunks of time, and has the
dynamic event collections to support the modeling of
dynamic events. ACT-R is inherently time dependent, but
provides no means for reasoning about time. On the other
hand, ACT-R has the capability to model the time course of
cognition at the millisecond level. Cyc has built-in
constraints on the duration of inferencing, but otherwise
does not model the time course of cognition.

Whereas ACT-R uses specialized productions and
forward inferencing which is very efficient, but not general,
Cyc relies on a generalized logic based inferencing engine
(forward by default, but backward, as well) that is made
more efficient via the use of heuristic rules. It is with
respect to their inferencing capabilities that Cyc and ACT-
R differ most.

Despite the differences discussed above, ACT-R and Cyc
have much in common as knowledge representation
systems and their integration is feasible and desirable given
the objectives of this research. Both are essentially
propositionally based systems of symbolic representation
with ACT-R opting for frame based propositional
representations and Cyc opting for predicate/argument
based propositional representations. Neither provides
imagistic representation or non-propositional spatial
processing capabilities.

Mapping Cyc’s Terms and Assertions to
ACT-R’s DM Chunks and Productions

Cyc terms may be straightforwardly mapped to ACT-R DM
chunks. For example, the Cyc term PhysicalDevice (terms
in Cyc are normally prefixed by #$, but the prefix is
ignored below) can be mapped to the ACT-R DM chunk
physicaldevice, where the DM chunk is defined by a chunk
type definition that contains no slots.

The mapping of Cyc assertions to ACT-R is more
complicated. Consider the mapping of Cyc’s generalization
(genls) and instance of (isa) assertions to ACT-R. One
approach for mapping these assertions from Cyc to ACT-R
would be to use ACT-R’s built-in single inheritance
mechanism to replicate the Cyc knowledge structure of
generalization/specialization, and instances of concepts. For
example, in Cyc, the concepts of PhysicalDevice and
Weapon are related as a generalization/specialization (i.e.
weapon is a class that is a specialization of the physical
device class), and Colt45Revolver is represented as an

instance of Weapon (i.e. colt 45 revolver is an instance of
weapon). Note that the distinction between specialization
and instantiation is not always clear cut, however,
instantiation is intended to cover the relationship between a
class and an instance of the class, whereas, specialization is
intended to cover the relationship between a subclass and a
class. In Cyc language, this is written as follows:

(genls Weapon PhysicalDevice)
(isa Colt45Revolver Weapon)

where genls stands for “generalization” and isa stands for
“is an instance of” (with the more specific terms being
listed first). The Cyc inferencing engine includes all the
needed means for inheriting the attributes of parent
concepts and for inferencing over these representations.

Using ACT-R’s built-in single inheritance mechanism,
these concepts could be defined as:

(chunk-type (weapon (:include physicaldevice) …)
(colt45revolver isa weapon)

where chunk-type identifies a chunk type (the basis for
defining DM chunks in ACT-R) :include indicates that
weapon is a subtype of physicaldevice, … indicates that the
chunk type may have additional slots defined as part of the
chunk type frame. Once the chunk type is defined,
instances of the chunk type (i.e. chunks) are defined using
the isa chunk definition frame with colt45revolver naming
the chunk and weapon identifying the chunk type.
However, this mapping is problematic when a concept or
object in Cyc inherits from more than one parent. For
instance, in Cyc, PhysicalDevice is a specialization of both
Artifact and SolidTangibleProduct. There is no built-in
facility in ACT-R to inherit from two parent chunk types
(despite the fact that the underlying Common Lisp language
supports multiple inheritance). Therefore, the definition of
physicaldevice in ACT-R would require a choice to inherit
from either the artifact chunk-type or the
solidtangibleproduct chunk-type, somehow accommodating
the other parent.

Further, it is not clear that ACT-R’s built-in single
inheritance mechanism is appropriate in any case. In the
tutorial that is provided with ACT-R, Unit 1 contains a
model of semantic memory that does not use the built-in
single inheritance mechanism. Instead inheritance is
implemented explicitly in the model. From a programming
perspective, this makes model creation more difficult, but
the computational cognitive modeler has full control over
the implementation of inheritance. Further, the use of the
built-in single inheritance mechanism circumvents the
ACT-R architecture’s computation of cognitive processing
time. That is, inferencing based on inheritance requires no
cognitive processing time if the built-in inheritance
mechanism is used.

Given this, we are working toward a more general
solution to the problem which does not use ACT-R’s built-

in single inheritance. Our method allows the relationship
between physicaldevice and the more general concepts,
artifact and solidtangibleproduct, to be defined as follows:

(chunk-type genls-ct child parent)
(achunk1 isa genls-ct child physicaldevice parent
artifact)
(achunk2 isa genls-ct child physicaldevice parent
solidtangibleprodujct)

In the chunk-type definition of genls-ct (i.e. generalization
chunk type), the slots child and parent are defined. Then
two chunks are defined to represent the child-parent
relationships between physicaldevice and artifact and
physicaldevice and solidtangibleproduct. This approach
will cover the genls assertions in the Cyc knowledge base.
A similar chunk type definition and chunks can be used to
cover Cyc’s isa assertions.

(chunk-type isa-ct instance class)
(achunk3 isa isa-ct instance colt45revolver class
weapon)

The primary chunk types and chunks currently envisioned
are the relationships isa-ct, genls-ct [specialization], and
property-ct plus the broad situation concepts action-ct,
event-ct, process-ct, situation-ct, and state-ct. This
approach with these primary chunk types will cover a large
majority of the Cyc knowledge base.

In general, there is a very direct mapping from Cyc
assertions to ACT-R DM chunks for those assertions that
are simple predicate/argument structures where the
arguments are simple terms. However, Cyc allows for more
complex assertions including logical operators which result
in more complex structures. In Cyc, these complex
assertions are referred to as rules and the mapping to ACT-
R is less straightforward.

Automating the mapping of Cyc rules into ACT-R
introduces additional considerations. Should they be
mapped to ACT-R DM chunks or productions? If they are
mapped to DM chunks, then the assertions may need to be
mapped to multiple DM chunks and productions will be
needed to support inferencing over them. If they are
mapped to productions, the generated productions will
require appropriate handling of the logical operators in
those rules. For example, conjunctions could be handled by
including multiple chunks in the slots of the goal template
that is associated with a production for each conjunct.
Disjunction could be handled by using separate ACT-R
productions for each disjunct. Logical implication can be
handled by the basic antecedent/consequent nature of ACT-
R’s productions. ACT-R also provides a negation operator
to negate a production rule slot value that matches to a
buffer and this could be adapted to handle logical negation.
However, ACT-R provides no quantification capabilities,
so additional productions and DM chunks will be needed to
handle quantification.

Besides the complexities in mapping Cyc rules to ACT-
R, a method for handling the mapping of Cyc functions and
microtheories to ACT-R is yet to be developed.

As the discussion above suggests, there are many subtle
issues involved in the mapping of Cyc assertions to ACT-R
DM chunks and productions, and fully automating this
mapping will not be simple. However, if successful, we will
be able to integrate the Cyc knowledge base with our ACT-
R based language comprehension system, providing a huge
increase in the knowledge available to support language
comprehension.

Some Additional Considerations
In their theory of sentence memory, Anderson, Budiu, and
Reder (2001) adopt a representational system within the
declarative memory component of ACT-R that contains
only two types of chunks: nodes and links. Given only node
and link chunks, the representation of a sentence like “Bob
paid the waiter” necessarily consists of multiple chunks:
node chunks to represent the individual words and phrases,
and link chunks to represent the hierarchical structure of the
sentence. The approach of Anderson et al. can be contrasted
with a representational system in which a single chunk
encodes the entire sentence (with the slots in the chunk
containing the subcomponents of the sentence). Anderson
et al. provide empirical support for their system of
representation based on the fragmentary retrieval of parts of
sentences in several memory retention studies.

From the perspective of frame-based representations,
limiting the possible types of “frames” (or chunks) to just
nodes and links may appear highly constraining. However,
nodes and links are the basic components of network
representations, and network representations are a highly
general form of knowledge representation. In restricting the
possible frame types to nodes and links, what Anderson et
al. have effectively done is implement a network
architecture within the frame based architecture of ACT-
R’s declarative memory component.

This network architecture resides within the over-arching
ACT-R architecture and is influenced by that architecture in
various ways. For example, ACT-R’s spreading activation
mechanism can activate nodes and links independently of
the structure that the nodes and links combine to form via
addition of an index to each node and link chunk. Anderson
et al. call this index the “context” slot and use it to tie the
components of a linguistic representation together. If all the
components of a linguistic representation have the same
value for the context slot, they will all be activated (to some
degree) by a goal chunk containing the index as one of its
slot values. Thus, the entire linguistic representation can be
activated in parallel even though there are multiple chunks
involved. Note that it is also possible to add an index to the
components of a single chunk corresponding to the entire
sentence, thereby activating the components of that
representation without having to traverse the representation.

That is, combining an index with the spreading activation
mechanism makes possible the activation of co-indexed
chunks independently of any other structural organization.
Thus, it is possible to combine a more structured frame-like
representation with indexing/spreading activation as a way
of providing alternative access to the components of a
representation.

Switching to another consideration, although Cyc is a
huge knowledge base of commonsense knowledge, it turns
out that Cyc lacks the domain specific knowledge needed
for the initial application of the language comprehension
model: pilot communication. Pilot communication is highly
specialized and the brevity terms that pilots use have
specialized meanings that are not captured in the Cyc
knowledge base. Given this, a separate knowledge
engineering effort is required to add the domain specific
knowledge needed before intelligent agents capable of
acting as pilots can be developed. And this requirement
brings to fore the knowledge acquisition capabilities of
Cyc. It has been our experience that the knowledge input
capabilities of Cyc are difficult to use without extensive
knowledge and experience with the Cyc knowledge base.
Deciding where in the Cyc ontology to attach domain
specific knowledge is an important and difficult decision to
make, and we do not fully understand the consequences of
that decision. Should our domain specific knowledge be
encoded as a separate micro-theory to avoid conflicts with
the existing ontology, or do we want to integrate the
domain specific knowledge into an existing micro-theory?
More generally, what is the appropriate level of granularity
for micro-theories? These considerations are made even
more controversial since we have no theory of the mapping
of Cyc micro-theories into ACT-R. Can we use an indexing
mechanism like that employed by Anderson et al. (2001) to
tie the assertions in a micro-theory together, or will that
lead to an undesirable proliferation of indexes to tie
together representations at different levels of granularity?

Summary
We are attempting to integrate the Cyc knowledge base into
ACT-R as a way of scaling up our language comprehension
system for use in the development of language capable
intelligent agents. With respect to the results of our effort,
the jury is still out. We have defined the mappings needed
to convert most of the terms and assertions in the Cyc
knowledge base into ACT-R DM chunks and productions.
However, Cyc does not provide the domain specific
knowledge needed for our initial application and this
domain specific knowledge will have to be manually added.
Further, it is unclear how much of the knowledge that is
provided in Cyc will prove necessary, given the specialized
domain of our initial application. Despite these concerns,
we are convinced that the development of functional
language comprehension systems necessitates the
integration of large sources of knowledge and Cyc is the

largest such source currently available. In this respect we
agree with Feigenbaum (2004) and his assertion that the
acquisition and integration of large amounts of knowledge
are the keys to the development of intelligent systems, and
we are intrigued by his suggestion that AI researchers focus
on the development of systems capable of acquiring
knowledge by reading texts as a way of overcoming the
knowledge acquisition bottleneck.

References
Anderson, J. R., Bothell, D., Byrne, M.D., Douglass, S.,
Lebiere, C., & Qin, Y. (in press). An integrated theory of
the mind. Psychological Review. http://act-
r.psy.cmu.edu/papers/403/IntegratedTheory.pdf

Anderson, J. R., Budiu, R., and Reder, L. (2001). A Theory
of Sentence Memory as Part of a General Theory of
Memory. Journal of Memory and Language, 45, 337-367.

Anderson, J. R,. & Lebiere, C. (1998). The Atomic
Components of Thought. Mahway, MJ: LEA.

Anderson, J. R., & Lebiere, C. (in press). The Newell Test
for a theory of mind. Behavioral and Brain Sciences.

Ball, J. (2003). Double R Theory.
www.DoubleRTheory.com

Ball, J. (2004). A Cognitively Plausible Model of Language
Comprehension. In Proceedings of the Thirteenth
Conference on Behavior Representation in Modeling and
Simulation. ISBN: 1-930638-35-3. Available on line at
http://www.sisostds.org/conference/index.cfm?conf=04BRI
MS (04-BRIMS-015).

Chomsky, N. (1965). Aspects of the Theory of Syntax.
Cambridge, MA: The MIT Press.

Engelmore, R., and Morgan, A. eds. (1986). Blackboard
Systems. Reading, Mass.: Addison-Wesley.

Feigenbaum, E. (2004). Keynote address. Florida AI
Research Society Conference.

Lakoff, G. (1987). Women, Fire and Dangerous Things.
Chicago: The University of Chicago Press

Langacker, R. (1987). Foundations of Cognitive Grammar,
Volume 1, Theoretical Prerequisites. Stanford, CA:
Stanford University Press

Langacker, R. (1991). Foundations of Cognitive Grammar,
Volume 2, Descriptive Applications. Stanford, CA:
Stanford University Press.

Lenat, D (1995). Cyc: A Large-Scale Investment in
Knowledge Infrastructure. Communications of the ACM
38:11.

Minsky, M. (2003). “Why A.I. Is Brain-Dead.” At Wired
Magazine online, Issue 11.08
http://www.wired.com/wired/archive/11.08/view.html?pg=
3

Newell, A. (1980). Physical symbol systems. Cognitive
Science, 4, 135-183.

Newell, A. (1990). Unified theories of cognition.
Cambridge, MA: Harvard University Press.

Nirenburg, S. & Raskin, V. (to appear). Ontological
Semantics. Cambridge: The MIT Press.

Talmy, L. (2003). Toward a Cognitive Semantics, Vols I
and II. Cambridge, MA: The MIT Press.

Whitten, D. (1995). Subject: [7] How does it work?
http://www.robotwisdom.com/ai/cycfaq.html.

Wilks, Y., Slator, B., & Guthrie, L. (1996). Electric Words:
Dictionaries, Computers, and Meanings. Cambridge, MA:
The MIT Press.

